1.800.858.7378 npic@ace.orst.edu
We're open from 8:00AM to 12:00PM Pacific Time, Mon-Fri

Malathion

Technical Fact Sheet

As of 2011, NPIC stopped creating technical pesticide fact sheets. The old collection of technical fact sheets will remain available in this archive, but they may contain out-of-date material. NPIC no longer has the capacity to consistently update them. To visit our general fact sheets, click here. For up-to-date technical fact sheets, please visit the Environmental Protection Agency’s webpage.

Molecular Structure -
Malathion

Laboratory Testing: Before pesticides are registered by the U.S. EPA, they must undergo laboratory testing for short-term (acute) and long-term (chronic) health effects. Laboratory animals are purposely given high enough doses to cause toxic effects. These tests help scientists judge how these chemicals might affect humans, domestic animals, and wildlife in cases of overexposure.

Chemical Class and Type:

Physical / Chemical Properties:

Uses:

Mode of Action:

Target Organisms

Non-target Organisms

Acute Toxicity:

Oral

LD50/LC50: A common measure of acute toxicity is the lethal dose (LD50) or lethal concentration (LC50) that causes death (resulting from a single or limited exposure) in 50 percent of the treated animals. LD50 is generally expressed as the dose in milligrams (mg) of chemical per kilogram (kg) of body weight. LC50 is often expressed as mg of chemical per volume (e.g., liter (L)) of medium (i.e., air or water) the organism is exposed to. Chemicals are considered highly toxic when the LD50/LC50 is small and practically non-toxic when the value is large. However, the LD50/LC50 does not reflect any effects from long-term exposure (i.e., cancer, birth defects or reproductive toxicity) that may occur at levels below those that cause death.

Dermal

Inhalation

TOXICITY CLASSIFICATION - MALATHION
High Toxicity Moderate Toxicity Low Toxicity Very Low Toxicity
Acute Oral LD50 Up to and including 50 mg/kg
(≤ 50 mg/kg)
Greater than 50 through 500 mg/kg
(>50-500 mg/kg)
Greater than 500 through 5000 mg/kg
(>500-5000 mg/kg)
Greater than 5000 mg/kg
(>5000 mg/kg)
Inhalation LC50 Up to and including 0.05 mg/L
(≤0.05 mg/L)
>Greater than 0.05 through 0.5 mg/L
(>0.05-0.5 mg/L)
Greater than 0.5 through 2.0 mg/L
(>0.5-2.0 mg/L)
Greater than 2.0 mg/L
(>2.0 mg/L)
Dermal LD50 Up to and including 200 mg/kg
(≤200 mg/kg)
Greater than 200 through 2000 mg/kg
(>200-2000 mg/kg)
Greater than 2000 through 5000 mg/kg
(>2000-5000 mg/kg)
Greater than 5000 mg/kg
(>5000 mg/kg)
Primary Eye Irritation Corrosive (irreversible destruction of ocular tissue) or corneal involvement or irritation persisting for more than 21 days Corneal involvement or other eye irritation clearing in 8 - 21 days Corneal involvement or other eye irritation clearing in 7 days or less Minimal effects clearing in less than 24 hours
Primary Skin Irritation Corrosive (tissue destruction into the dermis and/or scarring) Severe irritation at 72 hours (severe erythema or edema) Moderate irritation at 72 hours (moderate erythema) Mild or slight irritation at 72 hours (no irritation or erythema)
The highlighted boxes reflect the values in the "Acute Toxicity" section of this fact sheet. Modeled after the U.S. Environmental Protection Agency, Office of Pesticide Programs, Label Review Manual, Chapter 7: Precautionary Labeling. https://www.epa.gov/sites/default/files/2018-04/documents/chap-07-mar-2018.pdf

Signs of Toxicity - Animals

Signs of Toxicity - Humans

Chronic Toxicity:

Animals

Humans

Endocrine Disruption:

Carcinogenicity:

Animals

Humans

Reproductive or Teratogenic Effects:

Animals

Humans

Fate in the Body:

Absorption

Distribution

Metabolism

Excretion

Medical Tests and Monitoring:

Environmental Fate:

Soil

The "half-life" is the time required for half of the compound to break down in the environment.

1 half-life = 50% remaining
2 half-lives = 25% remaining
3 half-lives = 12% remaining
4 half-lives = 6% remaining
5 half-lives = 3% remaining

Half-lives can vary widely based on environmental factors. The amount of chemical remaining after a half-life will always depend on the amount of the chemical originally applied. It should be noted that some chemicals may degrade into compounds of toxicological significance.

Water

Air

Plants

Indoor

Food Residue

Ecotoxicity Studies:

Birds

Fish and Aquatic Life

Terrestrial Invertebrates

Regulatory Guidelines:

Date Reviewed: August 2009

Please cite as: Gervais, J. A.; Luukinen, B.; Buhl, K.; Stone, D. 2009. Malathion Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/malatech.html.

References:

  1. Reregistration Eligibility Decision (RED) - Malathion; EPA 738-R-06-030; U.S Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2006.
  2. Hazardous Substances Databank (HSDB), Malathion; U.S. Department of Health and Human Services, National Institutes of Health, National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/665 (accessed Jan 2008), updated June 2005.
  3. Tomlin, C. D. S., The Pesticide Manual, A World Compendium, 14th ed.; British Crop Protection Council: Alton, Hampshire, UK, 2006; pp 642-643.
  4. Hornsby, A. G. Wauchope, R. D. Herner, A. E. Pesticide Properties in the Environment; Springer-Verlag: New York, 1996.
  5. Roberts, T. R. Metabolic Pathways of Agrochemicals - Part 2: Insecticides and Fungicides; The Royal Society of Chemistry: Cambridge, UK, 1998; pp 360-367.
  6. Suntio, L. R.; Shiu, W. Y.; Mackay, D.; Seiber, J. N.; Glotfelty, D. E. Critical review of Henry's law constants for pesticides. Rev. Environ. Contam. Toxicol. 1988, 103, 1-59.
  7. Fendinger, N. J.; Glotfelty, D. E. Henry's law constants for selected pesticides, PAHs and PCBs. Environ. Toxicol. Chem. 1990, 9, 731-735.
  8. Sanders, P. F.; Seiber, J. N. A chamber for measuring volatilization of pesticides from model soil and water disposal systems. Chemosphere 1983, 12 (7/8), 999-1012.
  9. Reigart, J. R.; Roberts, J. R. Organophosphate Insecticides. Recognition and Management of Pesticide Poisonings, 5th ed.; U.S Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 1999; pp 34-47.
  10. Costa, L. G. Toxic effects of pesticides. Casarett and Doull's Toxicology: The Basic Science of Poisons, 7th ed.; Klaassen, C. D., Ed.; McGraw Hill Medical: New York, 2008; pp 883-930.
  11. Revised Reregistration Eligibility Decision (RED) for Malathion; EPA 738-R-06-030; U.S Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2009.
  12. Massoulie, J.; Bon, S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu. Rev. Neurosci. 1982, 5, 57-106.
  13. WHO. Environmental Health Criteria 63, Organophosphate Insecticides: A General Introduction; International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland, 1986.
  14. Malathion: Revised human health risk assessment for the reregistration eligibility decision document (RED); EPA-HQOPP- 2004-0348-0057; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2006.
  15. Mulla, M. S.; Mian, L. S.; Kawecki, J. A. Distribution, transport, and fate of the insecticides malathion and parathion in the environment. Residue Reviews; Gunther, F. A.; Gunther, J. D., Eds.; Springer-Verlag: New York, 1981.
  16. Kamrin, M. A. Pesticide Profiles: Toxicity, Environmental Impact, and Fate; Lewis Publishers: New York, 1997; pp 191-195.
  17. Gallo, M. J.; Lawryk, N. J. Organic phosphorus pesticides. Handbook of Pesticide Toxicology; Hayes Jr., W. J.; Laws Jr., E. R., Eds.; Academic Press, Inc.: San Diego, 1991; pp 917-1123.
  18. Berteau, P. E.; Deen, W. A. A comparison of oral and inhalation toxicities of four insecticides to mice and rats. Bull. Environ. Contam. Toxicol. 1978, 19 (1), 113-120.
  19. Weeks, M. H.; Lawson, M. A.; Angerhofer, R. A.; Davenport, C. D.; Pennington, N. E. Preliminary assessment of the acute toxicity of malathion in animals. Arch. Environ. Contam. Toxicol. 1977, 6, 23-31.
  20. Toxicological Profile for Malathion; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, 2008.
  21. Blodgett, D. J. Organophosphate and carbamate insecticides. Small Animal Toxicology, 2nd ed.; Peterson, M. E.; Talcott, P. A. Eds.; Elsevier Saunders: Saint Louis, 2006; pp 941-953.
  22. Wagner, S. L. Diagnosis and treatment of organophosphate and carbamate intoxication. Occup. Med.: State of the Art Rev. 1997, 12 (2), 239-249.
  23. Sudakin, D. L.; Mullins, M. E.; Horowitz, B. Z.; Abshier, V.; Letzig, L. Intermediate syndrome after malathion ingestion despite continuous infusion of pralidoxime. Clin. Toxicol. 2000, 38 (1), 47-50.
  24. Lee, P.; Tai, D. Y. H. Clinical features of patients with acute organophosphate poisoning requiring intensive care. Intensive Care Med. 2001, 27, 694-699.
  25. Insecticide Toxicology. Gulf War and Health Volume 2: Insecticides and Solvents; National Academy of Sciences, Institute of Medicine, The National Academies Press: Washington, DC, 2003; pp 43-46, 69-81.
  26. Malathion: Updated Revised Human Health Risk Assessment for the Reregistration Eligibility Decision Document (RED); EPAHQ- OPP-2004-0348-0004; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2005.
  27. Daly, I. A 24-month oral toxicity/oncogenicity study of malathion in the rat via dietary administration. Final report: Lab project No. 90-3641.1996. Unpublished study prepared by Huntington Life Sciences. EPA MRID 43942901. Toxicological Profile for Malathion; U.S Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Public Health Service: Atlanta, 2003.
  28. Moeller, H. C.; Rider, J. A. Plasma and red blood cell cholinesterase activity as indications of the threshold of incipient toxicity of ethyl-p-nitrophenyl thionobenzenephosphonate (EPN) and malathion in human beings. Toxicol. Appl. Pharmacol. 1962, 4, 123-130.
  29. Golz, H. H. Controlled human exposures to malathion aerosols. AMA Arch. Ind. Health 1959, 19, 53-59.
  30. CDC. Surveillance for Acute P 30. esticide-Related Illness during the Medfly Eradication Program - Florida, 1998. Morbidity and Mortality Weekly Report; U.S Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, 1999; Vol. 48, No. 44, pp 1015-1018,1027.
  31. Akhtar, N.; Kayani, S.; Ahmad, M.; Shahab, M. Insecticide-induced changes in secretory activity of the thyroid gland in rats. J. Appl. Toxicol. 1996, 16 (5), 397-400.
  32. Pournourmohammadi, S.; Farzami, B.; Ostad, S. N.; Azizi, E.; Abdollahi, M. Effects of malathion subchronic exposure on rat skeletal muscle glucose metabolism. Environ. Toxicol. Pharmacol. 2005, 19, 191-196.
  33. Simionescu, L.; Oprescu, M.; Sahleanu, V.; Dimitriu, V.; Ghinea, E. The serum and pituitary prolactin variations under the influence of a pesticide substance in the male rat. Rev. Roum. Med. 1977, 15 (3), 181-188.
  34. Dutta, H. M.; Nath, A.; Adhikari, S.; Roy, P. K.; Singh, N. K.; Munshi, J. S. D. Sublethal malathion induced changes in the ovary of an air-breathing fish, Heteropneustes fossilis: a histological study. Hydrobiologia 1994, 294 (3), 215-218.
  35. Ishihara, A.; Nishiyama, N.; Sugiyama, S.-i.; Yamauchi, K. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen. Comp. Endocrinol. 2003, 134 (1), 36-43.
  36. Draft List of Initial Pesticide Active Ingredients and Pesticide Inerts to be Considered for Screening Under the Federal Food, Drug, and Cosmetic Act. Fed. Regist. June 18, 2007, 72 (116), 33486-33503.
  37. NCI, Bioassay of malathion for possible carcinogenicity. CARCINOGENESIS Technical Report Series No. 24; U.S. Department of Health, Education and Welfare, Public Health Service, National Institutes of Health, National Cancer Institute: Bethesda, MD, 1978; pp 19-35.
  38. NCI, Bioassay of malathion for possible carcinogenicity. CARCINOGENESIS Technical Report Series No. 192; U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, National Cancer Institute: Bethesda, MD, 1979; pp 17-32.
  39. Slauter, R. W. 18 month oral (dietary) oncogenicity study in mice: Malathion. Lab project No. 668-001. Unpublished study prepared by International Research and Development Corporation, Mattawan, MI. EPA MRID 43407201. Toxicological Profile for Malathion; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Public Health Service: Atlanta, 1994.
  40. Miscellaneous Pesticides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1998; Vol. 30, p 103.
  41. McDuffie, H. H.; Pahwa, P.; McLaughlin, J. R.; Spinelli, J. J.; Fincham, S.; Dosman, J. A.; Robson, D.; Skinnider, L. F.; Chio, N. W. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol. Biomarkers Prev. 2001, 10, 1155-1163.
  42. Bonner, M. R.; Coble, J.; Blair, A.; Freeman, L. E. B.; Hoppin, J. A.; Sandler, D. A.; Alavanja, M. C. R. Malathion Exposure and the Incidence of Cancer in the Agricultural Health Study. Am. J. Epidemiol. 2007, 166 (9), 1023-1034.
  43. Machin, M. G. A.; McBride, W. G. Placental transfer of malathion in the rabbit. Med. Sci. Res. 1989, 17, 743-744.
  44. Preve da Silva, A.; Meotti, F. C.; Santos, A. R. S.; Farina, M. Lactational exposure to malathion inhibits brain acetylcholinesterase in mice. NeuroToxicol. 2006, 27 (6), 1101-1105.
  45. Betancourt, M.; Resendiz, A.; Fierro, E. C. R. Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro. Reprod. Toxicol. 2006, 22 (3), 508-512.
  46. Maibach, H. I.; Feldman, R. J.; Milby, T. H.; Serat, W. F. Regional variation in percutaneous penetration in man. Arch. Environ. Health 1971, 23, 208-211.
  47. Zeid, M. M. A.; El-Barouty, G.; Adbdel-Reheim, E.; Blancato, J.; Dary, C.; El-Sebae, A. H.; Saleh, M. Malathion's disposition in dermally and orally treated rats and its impact on the blood serum acetylcholine esterase and protein profile. J. Environ. Sci. Health, Part B 1993, 28 (4), 413-430.
  48. Saleh, M.; Ahmed, A.; Kamel, A.; 48. Dary, C. Determination of the distribution of malathion in rats following various routes of administration by whole-body electronic autoradiography. Toxicol. Ind. Health 1997, 13 (6), 751-758.
  49. Feldman, R. J.; Maibach, H. I., Percutaneous penetration of some pesticides and herbicides in man. Toxicol. Appl. Pharmacol. 1974, 28, 126-132.
  50. Sanghi, R.; Pillai, M. K. K.; Jayalekshmi, T. R.; Nair, A. Organochlorine and organophosphorus pesticide residues in breast milk from Bhopal, Madhya Pradesh, India. Hum. Exp. Toxicol. 2003, 22 (2), 73-76.
  51. CDC. Third National Report on Human Exposure to Environmental Chemicals; U.S Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, 2005.
  52. Bradman, A.; Harnley, M. E.; Goldman, L. R.; Marty, M. A.; Dawson, S. V.; Dibartolomeis, M. J. Malathion and malaoxon environmental levels used for exposure assessment and risk characterization of aerial applications to residential areas of southern California, 1989-1990. J. Expo. Anal. Environ. Epidemiol. 1994, 4 (1), 49-63.
  53. Getenga, Z. M.; Jondiko, J. I. O.; Wandiga, S. O.; Beck, E. Dissipation behavior of malathion and dimethoate residues from the soil and their uptake by the garden pea (Pisum sativum). Bull. Environ. Contam. Toxicol. 2000, 64, 359-367.
  54. Odenkirchen, E.; Wente, S. P. Risks of malathion use to federally listed California red-legged frog (Rana aurora draytonii) - Pesticide effects determination; U.S. Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Effects Division, U.S. Government Printing Office: Washington, DC, 2007.
  55. Advisory Committee on Pesticides, Evaluation of Malathion; Department for Environment, Food and Rural Affairs, Pesticides Safety Directorate, Ministry of Agriculture, Fisheries and Food: York, North Yorkshire, UK, 1995; No. 135, pp 18-23.
  56. Wolfe, N. L.; Zepp, R. G.; Gordon, J. A.; Baughman, G. L.; Cline, D. M. Kinetics of chemical degradation of malathion in water. Environ. Sci. Technol. 1977, 11 (1), 88-93.
  57. Wang, T. Assimilation of malathion in the Indian River estuary, Florida. Bull. Environ. Contam. Toxicol. 1991, 47, 238-243.
  58. Bondarenko, S.; Gan, J. Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environ. Toxicol. Chem. 2004, 23 (8), 1809-1814.
  59. Pesticide Data Program Annual Summary, Calendar Year 2006; U.S. Department of Agriculture, Agricultural Marketing Service: Washington, DC, 2007.
  60. Coupe, R. H.; Blomquist, J. D. Water-soluble pesticides in finished water of community water supplies. J. Am. Water Works Assoc. 2004, 96 (10), 56-68.
  61. Gilliom, R. J.; Barbash, J. E.; Crawford, C. G.; Hamilton, P. A.; Martin, J. D.; Nakagaki, N.; Nowell, L. H.; Scott, J. C.; Stackelberg, P. E.; Thelin, G. P.; Wolock, D. M. The Quality of Our Nation's Waters- Pesticides in the Nation's Streams and Ground Water, 1992- 2001; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, 2006.
  62. O'Brien, R. D., Properties and metabolism in the cockroach and mouse of malathion and malaoxon. J. Econ. Entomol. 1957, 50 (2), 159-164.
  63. Cotham, W. E.; Bidleman, T. F. Degradation of malathion, endosulfan, and fenvalerate in seawater and seawater/sediment microsystems. J. Agric. Food Chem. 1989, 37, 824-828.
  64. Kralj, M. B.; Franko, M.; Trebse, 64. P. Photodegradation of organophosphorus insecticides: investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 2007, 67, 99-107.
  65. LeNoir, J. S.; McConnell, L. L.; Fellers, G. M.; Cahill, T. M.; Seiber, J. N. Summertime transport of current-use pesticides from California's Central Valley to the Sierra Nevada mountain range, USA. Environ. Toxicol. Chem. 1999, 18 (12), 2715-2722.
  66. McConnell, L. L.; LeNoir, J. S.; Datta, S.; Seiber, J. N. Wet deposition of current-use pesticides in the Sierra Nevada Mountain Range, California, USA. Environ. Toxicol. Chem. 1998, 17 (10), 1908-1916.
  67. Glotfelty, D. E.; Seiber, J. N.; Liljedahl, L. A. Pesticides in fog. Nature 1987, 325 (12), 602-605.
  68. Belanger, A.; Vincent, C.; de Oliveira, D. A field study on residues of four insecticides used in strawberry protection. J. Environ. Sci. Health Part B 1990, 25 (5), 615-625.
  69. Pandey, S.; Kumar, R.; Sharma, S.; N. S. Nagpure, S. K. S., Verma, M. S. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol. Environ. Saf. 2005, 61, 114-120.
  70. Milam, C. D.; Farris, J. L.; Wilhide, J. D. Evaluating Mosquito Control Pesticides for Effect on Target and Nontarget Organisms. Arch. Environ. Contam. Toxicol. 2000, 39, 324-328.
  71. Del Carmen Alvarez, M.; Fuiman, L. A. Ecological performance of red drum (Sciaenops ocellatus) larvae exposed to environmental levels of the insecticide malathion. J. Environ. Toxicol. Chem. 2006, 25 (5), 1426-1432.
  72. Relyea, R., Synergistic impacts of malathion and predatory stress on six species of North American tadpoles. Environ. Toxicol. Chem. 2004, 23 (4), 1080-1084.
  73. Fordham, C. L.; Tessari, J. D.; Ramsdell, H. S.; Keefe, T. J. Effects of malathion on survival, growth, development, and equilibrium posture of bullfrog tadpoles (Rana catesbeiana). Environ. Toxicol. Chem. 2001, 20 (1), 179-184.
  74. Relyea, R.; Diecks, N. An unforseen chain of events: lethal effects of pesticides on frogs at sublethal concentrations. Ecol. Appl. 2008, 18 (7), 1728-1742.
  75. Relyea, R.; Hoverman, J. T. Interactive effects of predators and a pesticide on aquatic communities. Oikos 2008, 117, 1647-1658.
  76. Relyea, R. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 2005, 15 (2), 618-627.
  77. Howe, F. P.; Knight, R. L.; McEwen, L. C.; George, T. L. Direct and indirect effects of insecticide applications on growth and survival of nestling passerines. Ecol. Appl. 1996, 6 (4), 1314-1324.
  78. George, T. L.; McEwen, L. C.; Petersen, B. E. Effects of grasshopper control programs on rangeland breeding bird populations. J. Rangeland Manage. 1995, 48 (4), 336-342.
Facebook Twitter Youtube